
URANIUM PRODUCTION

Industrial Production of Purified solid Uranium cake - Process flow diagram

Raw Ore consitituents

Ultimate, maximum common uranium containing ore are the mixture of - UO $_2$ (basic) and UO $_3$ amphoteric oxides.

Process

Preparation of yellow cake solid (*Uranium) U_3O_8 is the extraction chemistry - which is often difficult - and metallurgical procedures - vary with - geological environment conditions.

First Step of Process

The ore is first crushed and ground to liberate mineral particles.

The amphoteric oxide is leached with sulphuric acid. The reaction gives

$$UO_3 (S) + 2 H^+(aq)$$
 \longrightarrow $UO_3^{2+}(aq) + H_2O$ $UO_3^{+2}(aq) + 3 SO_4^{+3}(aq)$ \longrightarrow $UO_2 (SO_4)_3^{4-}(aq)$

The basic oxides are converted by the same leaching with water soluble UO_2 (CO_3)₃ $^{4-}$ (aq) ions.

<u>Two methods</u> are used to purify and concentrate Uranium 1. Ion Exchange 2. Solvent Extraction.

<u>The more common Solvent extraction method</u> uses - territory amine in kerosene (the organic solvent) used in a continue process to extract R N amines.

R N amines react with sulphuric acid

$$2R_3N_{(org)} + H_2SO_4(aq) \longrightarrow (R_3NH)_2SO_{4(org)}$$

Impurities remain in aqua's phase.

Next Step of Process

Then the amine sulphate extracts the uraniyual ions into the organic phase.

If the amine is uranium sulphate, the following reaction takes place with uranium sulphate ions

$$(R_3NH)_2SO_4(org) + UO_2(SO_4)_3$$
 (aq) \longrightarrow $(R_3NH)_4UO_2(SO_4)_3(org) + 2SO_4$ (aq)

Solvents are removed by evaporating in vacuum.

Final Step of Extraction Process

The neutralize solution is then treated with ammonia to get the precipitant of ammonium di nitrate. $(NH_4)_2U_2O_7$.

Then this ammonium di nitrate $(NH_4)_2U_2O_7$ is **heated to** (yield) get <u>purified solid</u> (*Uranium) U_3O_8 the yellow cake .